Swept source optical coherence tomography as a tool for real time visualization and localization of electrodes used in electrophysiological studies of brain in vivo

Hideyuki Watanabe, Uma Maheswari Rajagopalan, Yu Nakamichi, Kei M. Igarashi, Hirofumi Kadono, Manabu Tanifuji

研究成果: Article査読

6 被引用数 (Scopus)

抄録

In studies of in vivo extracellular recording, we usually penetrate electrodes almost blindly into the neural tissue, in order to detect the neural activity from an expected target location at a certain depth. After the recording, it is necessary for us to determine the position of the electrodes precisely. Generally, to identify the position of the electrode, one method is to examine the postmortem tissue sample at micron resolution. The other method is using MRI and it does not have enough resolution to resolve the neural structures. To solve such problems, we propose swept source optical coherence tomography (SS-OCT) as a tool to visualize the cross-sectional image of the neural target structure along with the penetrating electrode. We focused on a rodent olfactory bulb (OB) as the target. We succeeded in imaging both the OB layer structure and the penetrating electrode, simultaneously. The method has the advantage of detecting the electrode shape and the position in real time, in vivo. These results indicate the possibility of using SS-OCT as a powerful tool for guiding the electrode into the target tissue precisely in real time and localizing the electrode tip during electrophysiological recordings.

本文言語English
ページ(範囲)3129-3134
ページ数6
ジャーナルBiomedical Optics Express
2
11
DOI
出版ステータスPublished - 2011
外部発表はい

ASJC Scopus subject areas

  • バイオテクノロジー
  • 原子分子物理学および光学

フィンガープリント

「Swept source optical coherence tomography as a tool for real time visualization and localization of electrodes used in electrophysiological studies of brain in vivo」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル