The pivotal cover and Frobenius-Schur indicators

研究成果: Article査読

7 被引用数 (Scopus)

抄録

In this paper, we introduce the notion of the pivotal cover Cpiv of a left rigid monoidal category C to develop a theoretical foundation for the theory of Frobenius-Schur (FS) indicators in "non-pivotal" settings. For an object V∈Cpiv, the (n, r)-th FS indicator νn,r(V) is defined by generalizing that of an object of a pivotal monoidal category. This notion gives a categorical viewpoint to some recent results on generalizations of FS indicators.Based on our framework, we also study the FS indicators of the "adjoint object" in a finite tensor category, which can be considered as a generalization of the adjoint representation of a Hopf algebra. The indicators of this object closely relate to the space of endomorphisms of the iterated tensor product functor.

本文言語English
ページ(範囲)357-402
ページ数46
ジャーナルJournal of Algebra
428
DOI
出版ステータスPublished - 2015 4月 5
外部発表はい

ASJC Scopus subject areas

  • 代数と数論

フィンガープリント

「The pivotal cover and Frobenius-Schur indicators」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル