Three-dimensional observation of SiO2 hollow spheres with a double-shell structure using aberration-corrected scanning confocal electron microscopy

Xiaobin Zhang, Masaki Takeguchi, Ayako Hashimoto, Kazutaka Mitsuishi, Peng Wang, Peter D. Nellist, Angus I. Kirkland, Meguru Tezuka, Masayuki Shimojo

研究成果: Article

6 引用 (Scopus)


Optical sectioning using scanning confocal electron microscopy (SCEM) is a new three-dimensional (3D) imaging technique which promises improved depth resolution, particularly for laterally extended objects. Using a stage-scanning system to move the specimen in three dimensions, two-dimensional (2D) images sliced from any plane in XYZ space can be obtained in shorter acquisition times than those required for conventional electron tomography. In this paper, a double aberration-corrected SCEM used in annular dark-field mode was used to observe the 3D structure of SiO2 hollow spheres fabricated by a carbon template method. The double-shell structure of the sample was clearly reflected in both XY- and XZ-sliced images. However, elongation along the optical axis was still evident in the XZ-sliced images even when double aberration correctors were used. Application of a deconvolution technique to the experimental XZ-sliced images reduced the elongated shell thicknesses of the SiO2 sphere by 40-50 and the selectivity of information at a certain sample depth was also enhanced. Subsequently, 3D reconstruction by stacking the deconvoluted slice images restored the spherical surface of a SiO2 sphere. The Author 2012. Published by Oxford University Press [on behalf of Japanese Society of Microscopy]. All rights reserved.

ジャーナルJournal of Electron Microscopy
出版物ステータスPublished - 2012 6 1


ASJC Scopus subject areas

  • Instrumentation