Tiny Two-Stage 1-GHz Time-Difference Amplifier without Input Time-Difference Limitation and Extreme Points

Atsushi Mamba, Masahiro Sasaki

研究成果: Conference contribution

抄録

Conventional time-difference amplifiers (TDAs), which can improve the time-domain resolution, use capacitors and an external control circuit to make gain, control gain, and improve linearity. However, this configuration produces a limitation in the maximum operating frequency and high power consumption. This paper proposes and demonstrates a TDA for a variety of time-domain circuits. The proposed TDA consists of two circuits, including a modified SR latch circuit and gain control circuit (GCC). The linearity of this TDA is controlled by the GCC, which is a part of the amplifier, by only using the time-difference signals generated by the modified SR latch. This TDA is fabricated in the 0.18 J.1m CMOS process, and the core area occupies only 13 µm×14 µm. The measurement results show that the output time difference monotonically increases and has no extreme points for an entire clock period with a 1-GHz input clock. The gain of the flat region in the range of ±130 ps is 1.54 with a maximum gain error of less than 6.5%, and the power consumption is 2230 µW. The proposed TDA can be used for not only a time to digital converter, similar with conventional TDAs, but also circuits using the time domain, such as a high-speed comparators and time-difference adjustment methods.

本文言語English
ホスト出版物のタイトルICECS 2020 - 27th IEEE International Conference on Electronics, Circuits and Systems, Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781728160443
DOI
出版ステータスPublished - 2020 11 23
イベント27th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2020 - Glasgow, United Kingdom
継続期間: 2020 11 232020 11 25

出版物シリーズ

名前ICECS 2020 - 27th IEEE International Conference on Electronics, Circuits and Systems, Proceedings

Conference

Conference27th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2020
国/地域United Kingdom
CityGlasgow
Period20/11/2320/11/25

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「Tiny Two-Stage 1-GHz Time-Difference Amplifier without Input Time-Difference Limitation and Extreme Points」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル