Two recursive theorems on n-extendibility

Tsuyoshi Nishimura, Akira Saito

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We give two recursive theorems on n-extendible graphs. A graph G is said to be (k,n)-extendible if every connected induced subgraph of G of order 2k is n-extendible. It is said to be [k,n]-extendible if G -V (H) is n-extendible for every connected induced subgraph H of G of order 2k. In this note we prove that every (k,n)-extendible graph is (k + 1, n + 1)-extendible and that every [k,n]-extendible graph is [k -1,n]-extendible. Both are natural generalizations of recent results by Nishimura ([1, 2]).

本文言語English
ページ(範囲)319-323
ページ数5
ジャーナルDiscrete Mathematics
162
1-3
DOI
出版ステータスPublished - 1996 12 25

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Discrete Mathematics and Combinatorics

フィンガープリント 「Two recursive theorems on n-extendibility」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル